Business Intelligence Analyst

alfatraining Bildungszentrum GmbH Rottweil

Sie können sich direkt beim Anbieter anmelden.

Aktionen

Kursbeschreibung

Business Intelligence Analysts sind für die Durchführung von Analysen zuständig und fungieren als Bindeglied zwischen Fachabteilungen. Die entsprechenden Kenntnisse werden in diesem Lehrgang anschaulich vermittelt und mit dem Einsatz von Künstlicher Intelligenz (KI) in Verbindung gebracht.

Statistik

Statistische Grundlagen (ca. 6 Tage)
Messtheoretische Grundlagen (Grundgesamtheit und Stichprobe, Stichprobenarten, Messung und Skalenniveaus)
Univariate Deskriptivstatistik (Häufigkeitsverteilungen, Zentralmaße, Streuungsmaße, Standardwert, Histogramme, Balkendiagramme, Kreisdiagramme, Liniendiagramme und Boxplots)
Bivariate Deskriptivstatistik (Zusammenhangsmaße, Korrelationskoeffizienten, Kreuztabellen, Streudiagramme und gruppierte Balkendiagramme)
Grundlagen der induktiven Inferenzstatistik (Wahrscheinlichkeitsverteilung, Normalverteilung, Mittelwerteverteilung, Signifikanztest, Nullhypothesentest nach Fisher, Effektgröße, Parameterschätzung, Konfidenzintervalle, Fehlerbalkendiagramme, Poweranalysen und Ermittlung des optimalen Stichprobenumfangs)

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld

Methoden zum Vergleich von zwei Gruppen (ca. 5 Tage)
z- und t-Test für eine Stichprobe (Abweichung von einem vorgegebenen Wert)
t-Test für den Mittelwertsunterschied von zwei unabhängigen/verbundenen Stichproben
Prüfung der Wirksamkeit von Aktionen, Maßnahmen, Interventionen und anderen Veränderungen mit t-Tests (Pretest-Posttest-Designs mit zwei Gruppen)
Unterstützende Signifikanztests (Anderson-Darling-Test, Ryan-Joiner-Test, Levene-Test, Bonnet-Test, Signifikanztest für Korrelationen)
Nonparametrische Verfahren (Wilcoxon-Test, Vorzeichentest, Mann-Whitney-Test)
Kontingenzanalysen (Binomialtest, Exakter Test nach Fisher, Chi-Quadrat-Test, Kreuztabellen mit Assoziationsmaße)

Methoden zum Mittelwertvergleich von mehreren Gruppen (ca. 5 Tage)
Ein- und zweifaktorielle Varianzanalyse (einfache und balancierte ANOVA)
Mehrfaktorielle Varianzanalyse (Allgemeines lineares Modell)
Feste, zufällige, gekreuzte und geschachtelte Faktoren
Mehrfachvergleichsverfahren (Tukey-HSD, Dunnett, Hsu-MCB, Games-Howell)
Interaktionsanalyse (Analyse von Wechselwirkungseffekten)
Trennschärfe und Poweranalyse bei Varianzanalysen

Einführung in die Versuchsplanung (DoE, Design of Experiments) (ca. 1 Tag)
Voll- und teilfaktorielle Versuchspläne

Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse



Mathematische Modellierung mit MATLAB und Simulink

Grundlagen MATLAB (ca. 2 Tage)
MATLAB-Oberfläche
Auslesen von Daten aus einer Datei
Variablen, Arrays, Operatoren, Grundfunktionen
Grafische Darstellung von Daten
Anpassen von Diagrammen
Exportieren von Grafiken

Variablen und Befehle (ca. 2 Tage)
Relationale und logische Operatoren
Mengen, Mengen bei 2D-Körpern (Polyshape)
Durchführung mathematischer und statistischer Berechnungen mit Vektoren
Grafiken in der Statistik

Analyse und Visualisierung (ca. 1 Tag)
Erstellen und Verändern von Matrizen
Mathematische Operationen mit Matrizen
Grafische Darstellung von Matrixdaten
Matrixanwendungen: Abbildungen, Rotation, Lineare Gleichungssysteme, Least Square Verfahren

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld

Datenverarbeitung (ca. 1 Tag)
Datentypen: Structure Arrays, Cell Arrays, String vs. Char, Categorical, Datetime u. v. m.
Anlegen und Organisieren tabellarischer Daten
Bedingte Datenauswahl
Importieren/Exportieren mit Matlab: Ordnerstrukturen, .mat-Daten, Tabellendaten, Fließtexte

MATLAB-Programmierung (ca. 3 Tage)
Kontrollstrukturen: Schleifen, if-else, Exceptions
Funktionen
Objektorientierte Programmierung
App Design

Simulation in MATLAB (ca. 5 Tage)
Numerische Integration und Differenziation
Grundlagen der Simulation gewöhnlicher Differentialgleichungen, Matlab ODE und Solveroptionen
Simulationstechnik in Matlab: Eingabeparameter, Dateninterpolation, Simulationsstudien
Simulationssteuerung: Eventfunctions (Zero Crossing), Outputfunctions
Anwendungsbeispiele, z. B. Simulation eines Elektromotors, Simulation einer Rakete

Simulink (ca. 4 Tage)
Grundlagen in Simulink: Schaubilder, Funktionen, Signale und Differentialgleichungen
Funktionen, Subsysteme und Bibliotheken
Import/Export, Lookup-Tabellen, Regelung
Zero-Crossing, Automatisierung von Simulationsaufgaben (Matlab Zugriff)
Anwendungsbeispiele, z. B. Simulation eines Flugzeugtriebstrangs

Projektarbeit (ca. 2 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse



Programmierung mit Python

Grundlagen Python (ca. 1 Tag)
Geschichte, Konzepte
Verwendung und Einsatzgebiete
Syntax

Erste Schritte mit Python (ca. 5 Tage)
Zahlen
Zeichenketten
Datum und Zeit
Standardeingabe und -ausgabe
list, tuple dict, set
Verzweigungen und Schleifen (if, for, while)

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld

Funktionen (ca. 5 Tage)
Eigene Funktionen definieren
Variablen
Parameter, Rekursion
Funktionale Programmierung

Fehlerbehebung (ca. 0,5 Tage)
try, except
Programmunterbrechungen abfangen

Objektorientierte Programmierung (ca. 4,5 Tage)
Python-Klassen
Methoden
Unveränderliche Objekte
Datenklasse
Vererbung

Grafische Benutzeroberfläche (ca. 1 Tag)
Buttons und Textfelder
grid-Layout
Dateiauswahl

Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse



Data Engineer

Grundlagen Business Intelligence (ca. 2 Tage)
Anwendungsfelder, Dimensionen einer BI Architektur
Grundlagen Business Intelligence, OLAP, OLTP, Aufgaben der Data Engineers
Data Warehousing (DWH): Umgang und Verarbeitung von strukturierten, semi-strukturierten und unstrukturierten Daten

Anforderungsmanagement (ca. 2 Tage)
Aufgaben, Ziele und Vorgehensweise in der Anforderungsanalyse
Datenmodellierung, Einführung/Modellierung mit ERM
Einführung/Modellierung in der UML
· Klassendiagramme
· Use-Case Analyse
· Aktivitätsdiagramme

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld

Datenbanken (ca. 3 Tage)
Grundlagen von Datenbanksystemen
Architektur von Datenbankmanagementsystemen
Anwendung RDBMS
Umsetzung Datenmodell in RDBMS, Normalformen
Praktische und theoretische Einführung in SQL
Grenzen von Relationalen Datenbanken, csv, json

Data Warehouse (ca. 4 Tage)
Star Schema
Datenmodellierung
Erstellung Star Schema in RDBMS
Snowflake Schema, Grundlagen, Datenmodellierung
Erstellung Snowflake Schema in RDBMS
Galaxy Schema: Grundlagen, Datenmodellierung
Slowly Changing Dimension Tables Typ 1 bis 5 – Restating, Stacking, Reorganizing, mini Dimension und Typ 5
Einführung in normal, causal, mini und monster, heterogeneous und sub Dimensions
Vergleich von state und transaction oriented
Faktentabellen, Density und Storage vom DWH

ETL (ca. 4 Tage)
Data Cleansing
· Null Values
· Aufbereitung von Daten
· Harmonisierung von Daten
· Anwendung von Regular Expressions
Data Understanding
· Datenvalidierung
· Statistische Datenanalyse
Datenschutz, Datensicherheit
Praktischer Aufbau von ETL-Strecken
Data Vault 2.0, Grundlagen, Hubs, Links, Satellites, Hash Key, Hash Diff.
Data Vault Datenmodellierung
Praktischer Aufbau eines Data Vault Modells – Raw Vault, Praktische Umsetzung von Hash-Verfahren

Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse



Data Analytics

Einführung Datenanalyse (ca. 1 Tag)
CRISP-DM Referenzmodell
Data Analytics Workflows
Begriffsabgrenzung Künstliche Intelligenz, Machine Learning, Deep Learning
Anforderungen und Rolle im Unternehmen der Data Engineers, Data Scientists und Data Analysts

Wiederholung Grundlagen Python (ca. 1 Tag)
Datentypen
Funktionen

Datenanalyse (ca. 3 Tage)
Zentrale Python-Module im Kontext Data Analytics (NumPy, Pandas)
Prozess der Datenaufbereitung
Data Mining Algorithmen in Python

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld

Datenvisualisierung (ca. 3 Tage)
Explorative Datenanalyse
Insights
Datenqualität
Nutzenanalyse
Visualisierung mit Python: Matplotlib, Seaborn, Plotly Express
Data Storytelling

Datenmanagement (ca. 2 Tage)
Big Data Architekturen
Relationale Datenbanken mit SQL
Vergleich von SQL- und NoSQL-Datenbanken
Business Intelligence
Datenschutz im Kontext der Datenanalyse

Datenanalyse im Big Data Kontext (ca. 1 Tag)
MapReduce-Ansatz
Spark
NoSQL

Dashboards (ca. 3 Tage)
Bibliothek: Dash
Aufbau von Dashboards – Dash Components
Customizing von Dashboards
Callbacks

Text Mining (ca. 1 Tag)
Data Preprocessing
Visualisierung
Bibliothek: SpaCy

Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse



Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Kursinformationen

Kurs-ID
9103-2025-09-22
Dauer
20 Woche(n)
Unterrichtszeiten
Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
Termin
22.09.2025 bis 13.02.2026
Kosten
k. A.
Zielgruppe
Der Lehrgang richtet sich an Personen mit abgeschlossenem Studium in der Informatik, Wirtschaftsinformatik, BWL, Mathematik oder vergleichbarer Qualifikation.
Voraussetzung
Kenntnisse in relationalen Datenbanken werden vorausgesetzt.
Förderung
Bildungsgutschein (Arbeitsuchende und Arbeitslose), Weiterbildungsförderung für Beschäftigte, Europäischer Sozialfonds ESF (Kurzarbeit oder Transfergesellschaften). Weitere Förderstellen: Berufsförderungsdienst (BFD), die Berufsgenossenschaft (BG) sowie der Rentenversicherungsträger (DRV).
Präsenzkurs
Keine Angabe.
mind. Teilnehmerzahl
6
max. Teilnehmerzahl
25
URL des Kurses
Anmelde URL des Kurses
spezielles Angebot für Dozenten
Keine Angabe.
Veranstaltungsort
alfatraining Bildungszentrum GmbH
Präsenzgasse 8
78628 Rottweil
Abendkurs
Nein
Bildungsgutschein
Ja
Förderfähig nach Fachkursprogramm des ESF
k. A.
Barierrefreier Zugang
k. A.
Schlagworte
diagramme, objektorientiert, sql, mathematik