Deep Learning

alfatraining Bildungszentrum GmbH Tuttlingen

Sie können sich direkt beim Anbieter anmelden.

Aktionen

Kursbeschreibung

Mit Deep Learning lassen sich große Datenmengen nach Mustern und Modellen untersuchen. Es kommt daher häufig für die Objekt-, Gesichts- oder Spracherkennung zum Einsatz. Der Kurs erläutert dir die Methoden des Deep Learnings auf Basis von neuronalen Netzen.

Deep Learning

Einführung Deep Learning (ca. 1 Tag)
Deep Learning als eine Art von Machine Learning

Grundlagen in neuronalen Netzen (ca. 4 Tage)
Perceptron
Berechnung neuronaler Netze
Optimierung der Modellparameter, Backpropagation
Deep‐Learning‐Bibliotheken
Regression vs. Klassifikation
Lernkurven, Überanpassung und Regularisierung
Hyperparameteroptimierung
Stochastischer Gradientenabstieg (SGD)
Momentum, Adam Optimizer
Lernrate

Convolutional Neural Network (CNN) (ca. 2 Tage)
Bildklassifizierung
Convolutional‐Schichten, Pooling‐Schichten
Reshaping‐Schichten, Flatten, Global‐Average‐Pooling
CNN‐Architekturen ImageNet‐Competition
Tiefe neuronale Netze, Vanishing Gradients, Skip‐Verbindungen, Batch‐Normalization

Transfer Learning (ca. 1 Tag)
Anpassen von Modellen
Unüberwachtes Vortrainieren
Image‐Data‐Augmentation, Explainable AI

Regional CNN (ca. 1 Tag)
Objektlokalisierung
Regressionsprobleme
Verzweigte neuronale Netze

Methoden der kreativen Bilderzeugung (ca. 1 Tag)
Generative Adversarial Networks (GAN)
Deepfakes
Diffusionsmodelle

Recurrente neurale Netze (ca. 2 Tage)
Sequenzanalyse
Rekurrente Schichten
Backpropagation through time (BPTT)
Analyse von Zeitreihen
Exploding und Vanishing Gradient Probleme
LSTM (Long Short‐Term Memory)
GRU (Gated Recurrent Unit)
Deep RNN
Deep LSTM

Textverarbeitung durch neuronale Netze (ca. 2 Tage)
Text‐Preprocessing
Embedding‐Schichten
Text‐Klassifizierung
Sentimentanalyse
Transfer‐Learning in NLP
Übersetzungen
Seqence‐to‐Sequence‐Verfahren, Encoder‐Decoder‐Architektur

Sprachmodelle (ca. 1 Tag)
BERT, GPT
Attention‐Schichten, Transformers
Textgeneration‐Pipelines
Summarization
Chatbots

Deep Reinforcement Learning (ca. 1 Tag)
Steuerung dynamischer Systeme
Agentensysteme
Training durch Belohnungen
Policy Gradients
Deep‐Q‐Learning

Bayes'sche neuronale Netze (ca. 1 Tag)
Unsicherheiten in neuronalen Netzen
Statistische Bewertung von Prognosen
Konfidenz, Standardabweichung
Unbalancierte Daten
Sampling‐Methoden

Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse



Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Kursinformationen

Kurs-ID
9491-2025-05-05
Dauer
4 Woche(n)
Unterrichtszeiten
Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
Termin
05.05.2025 bis 30.05.2025
Kosten
k. A.
Zielgruppe
Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-)Ingenieurwissenschaften
Voraussetzung
Vorkenntnisse im Bereich Machine Learning sowie in der Programmiersprache Python werden vorausgesetzt.
Förderung
Bildungsgutschein (Arbeitsuchende und Arbeitslose), Weiterbildungsförderung für Beschäftigte, Europäischer Sozialfonds ESF (Kurzarbeit oder Transfergesellschaften). Weitere Förderstellen: Berufsförderungsdienst (BFD), die Berufsgenossenschaft (BG) sowie der Rentenversicherungsträger (DRV).
Präsenzkurs
Keine Angabe.
mind. Teilnehmerzahl
6
max. Teilnehmerzahl
25
URL des Kurses
Anmelde URL des Kurses
spezielles Angebot für Dozenten
Keine Angabe.
Veranstaltungsort
alfatraining Bildungszentrum GmbH
Königstraße 7
78532 Tuttlingen
Abendkurs
Nein
Bildungsgutschein
Ja
Förderfähig nach Fachkursprogramm des ESF
k. A.
Barierrefreier Zugang
k. A.
Schlagworte
datenverarbeitung, datenbank, intelligenz, datenanalyse
Gelistet in folgenden Rubriken: