Zertifikatskurs Künstliche Intelligenz/Machine Learning (virtuelle Präsenz)

Graduate Campus Hochschule Aalen GmbH
Aktionen

Kursbeschreibung

LERNZIELE
Die Teilnehmenden kennen und verstehen wichtige Grundprinzipien und Methoden der Künstlichen Intelligenz. Sie sind in der Lage, Verfahren, Vorgehensweisen, Risiken und Grenzen intelligenter Systeme zu analysieren und können Lösungsansätze für typische KI-Probleme entwickeln und bewerten. Die Teilnehmenden sind imstande, mithilfe von Verfahren des maschinellen Lernens Anwendungen für Klassifikations- und Prognosemodelle zu entwickeln und innerhalb ihres Kompetenzbereichs einzusetzen.

LEHRINHALTE
1. Prof. Dr.-Ing. Nicolaj Stache:

1.1 Grundlagen des maschinellen Lernens, Überblick über klassische Verfahren, Begrifflichkeiten

1.2 Einführung in das Tooling für die Praxisphasen: Python, Jupyter Notebook, Python-Bibliotheken, Tensor-Flow

1.3 Praxisphase: klassische Verfahren des maschinellen Lernens



2. Prof. Dr. Oliver Wasenmüller:

2.1 Lineare Klassifikation

2.2 Optimierung

2.3 Neuronale Netzwerke

2.4 Rückpropagation



3. Prof. Dr.-Ing. Nicolaj Stache:

3.1 Vertiefung in das Tooling für die Praxisphasen: Numpy

3.2 Einführung in neuronale Netze, Inferenz, Training

3.3 Praxisphase: Neuronales Netz mit Numpy

3.4 Tiefe neuronale Netze

3.5 Praxisphase: Einführung in Tensorflow & Digit Recognition

3.6 Convolutional Neural Networks

3.7 Praxisphase: Verkehrszeichenklassifikation über Deep Learning



4. Prof. Dr. Oliver Wasenmüller:

4.1 Deep Learning Hardware & Software

4.2 Traning: Aktivierungsfunktionen, Datenvorverarbeitung, Gewichtsinitialisierung, Regularisierung, Lernrate, Batch Training, Hyperparamerer Optimierung



5. Prof. Dr.-Ing. Nicolaj Stache:

5.1 Bekannte Netzwerk-Architekturen

5.2 Praxisphase: Transfer-Learning

5.3 Fortgeschrittene Anwendungen (GAN, RNN)

5.4 Visualierungstechniken

5.5 Projektarbeitsbeschreibungen, lokale Tooling-Installation



6. Prof. Dr. Oliver Wasenmüller:

6.1 Detektion

6.2 Segmentierung

6.3 Praxisphase: Detektion und Segmentierung

6.4 Reinforcement Learning

Kursinformationen

Termin
auf Anfrage
Kosten
1.600,00 €
Voraussetzung
Abgeschlossenes (technisches) Erststudium
Präsenzkurs
Keine Angabe.
mind. Teilnehmerzahl
k. A.
max. Teilnehmerzahl
k. A.
URL des Kurses
Anmelde URL des Kurses
spezielles Angebot für Dozenten
Keine Angabe.
Veranstaltungsort
Abendkurs
k. A.
Bildungsgutschein
k. A.
Förderfähig nach Fachkursprogramm des ESF
k. A.
Barierrefreier Zugang
k. A.