Machine Learning
Kurs-ID | 9765-2024-11-11 |
Datum | 11.11.2024 bis 06.12.2024 |
Dauer | 4 Woche(n) |
Unterrichtszeiten | Montag bis Freitag von 08:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr) |
Kosten | k. A. |
Zielgruppe | Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-) Ingenieurwissenschaften |
Voraussetzung | Die Programmiersprache Python wird vorausgesetzt, Vorkenntnisse im Bereich Data Analytics werden empfohlen. |
Abschluss | Zertifikat „Machine Learning“ |
Förderung | Bildungsgutschein (Arbeitsuchende und Arbeitslose), Weiterbildungsförderung für Beschäftigte, Europäischer Sozialfonds ESF (Kurzarbeit oder Transfergesellschaften). Weitere Förderstellen: Berufsförderungsdienst (BFD), die Berufsgenossenschaft (BG) sowie der Rentenversicherungsträger (DRV). |
Präsenzkurs | Keine Angabe. |
mind. Teilnehmerzahl | 6 |
max. Teilnehmerzahl | 25 |
URL des Kurses | Details beim Anbieter |
Anmelde URL des Kurses | Direkte Anmeldung beim Anbieter |
spezielles Angebot für Dozenten | Keine Angabe. |
Veranstaltungsort
|
alfatraining Bildungszentrum GmbH
Bahnhofstraße 2 72764 Reutlingen |
Abendkurs | Bildungsgutschein | Förderfähig nach Fachkursprogramm des ESF | Barierrefreier Zugang |
---|---|---|---|
Nein | Ja | k. A. | k. A. |
Beschreibung |
---|
Bei Machine Learning wird künstliches Wissen aus Erfahrung generiert – es ist ein Teilbereich der Künstlichen Intelligenz. IT-Systeme sind in der Lage, Muster in bestehenden Datenbeständen zu identifizieren und mithilfe von Algorithmen eigenständige Lösungen für Probleme zu finden. Machine Learning Einführung in Machine Learning (ca. 5 Tage) Warum Machine Learning? Anwendungsbeispiele Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen Beispiele für Datenbestände Daten kennenlernen Trainings-, Validierungs- und Testdaten Daten sichten Vorhersagen treffen Überwachtes Lernen (ca. 5 Tage) Klassifikation und Regression Verallgemeinerung, Overfitting und Underfitting Größe des Datensatzes Algorithmen zum überwachten Lernen Lineare Modelle Bayes-Klassifikatoren Entscheidungsbäume Random Forest Gradient Boosting k-nächste-Nachbarn Support Vector Machines Conditional Random Field Neuronale Netze und Deep Learning Wahrscheinlichkeiten Unüberwachtes Lernen (ca. 5 Tage) Arten unüberwachten Lernens Vorverarbeiten und Skalieren Datentransformationen Trainings- und Testdaten skalieren Dimensionsreduktion Feature Engineering Manifold Learning Hauptkomponentenzerlegung (PCA) Nicht-negative-Matrix-Faktorisierung (NMF) Manifold Learning mit t-SNE Clusteranalyse k-Means-Clustering Agglomeratives Clustering Hierarchische Clusteranalyse DBSCAN Clusteralgorithmen Evaluierung und Verbesserung (ca. 2 Tage) Modellauswahl und Modellevaluation Abstimmung der Hyperparameter eines Schätzers Kreuzvalidierung Gittersuche Evaluationsmetriken Klassifikation Projektarbeit (ca. 3 Tage) Zur Vertiefung der gelernten Inhalte Präsentation der Projektergebnisse Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert. |
Schlagworte |
---|
datenverarbeitung, intelligenz, algorithmen, datenanalyse |
Gelistet in folgenden Rubriken: |
---|