KI-Spezialist:in

Kurs-ID 11664-2023-10-09
Datum 09.10.2023 bis 01.12.2023
Dauer 8 Woche(n)
Unterrichtszeiten Montag bis Freitag von 08:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
Kosten k. A.
Zielgruppe Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-) Ingenieurwissenschaften
Abschluss alfatraining-Zertifikat „KI-Spezialist:in“
Förderung Bildungsgutschein (Arbeitsuchende und Arbeitslose), Weiterbildungsförderung für Beschäftigte, Europäischer Sozialfonds ESF (Kurzarbeit oder Transfergesellschaften). Weitere Förderstellen: Berufsförderungsdienst (BFD), die Berufsgenossenschaft (BG) sowie der Rentenversicherungsträger (DRV).
Präsenzkurs Keine Angabe.
mind. Teilnehmerzahl 6
max. Teilnehmerzahl 25
URL des Kurses Details beim Anbieter
Anmelde URL des Kurses Direkte Anmeldung beim Anbieter
spezielles Angebot für Dozenten Keine Angabe.
Veranstaltungsort
 
alfatraining Bildungszentrum GmbH
Reichenaustr. 11
78467 Konstanz

 

AbendkursBildungsgutscheinBarierrefreier Zugang
NeinJak. A.

 

Beschreibung
Der Kurs führt von den Grundlagen des Machine Learning über die beiden Kategorien überwachtes und unüberwachtes Lernen zum abschließenden Thema Evaluierung und Verbesserung. Außerdem werden die Methoden des Deep Learnings auf Basis von neuronalen Netzen mit dazugehörigen Tools erläutert.

KI-Spezialist:in

Machine Learning

Einführung in Machine Learning (ca. 5 Tage)
Warum Machine Learning?
Anwendungsbeispiele
Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen
Beispiele für Datenbestände
Daten kennenlernen
Trainings-, Validierungs- und Testdaten
Daten sichten
Vorhersagen treffen

Überwachtes Lernen (ca. 5 Tage)
Klassifikation und Regression
Verallgemeinerung, Overfitting und Underfitting
Größe des Datensatzes
Algorithmen zum überwachten Lernen
Lineare Modelle
Bayes-Klassifikatoren
Entscheidungsbäume
Random Forest
Gradient Boosting
k-nächste-Nachbarn
Support Vector Machines
Conditional Random Field
Neuronale Netze und Deep Learning
Wahrscheinlichkeiten

Unüberwachtes Lernen (ca. 5 Tage)
Arten unüberwachten Lernens
Vorverarbeiten und Skalieren
Datentransformationen
Trainings- und Testdaten skalieren
Dimensionsreduktion
Feature Engineering
Manifold Learning
Hauptkomponentenzerlegung (PCA)
Nicht-negative-Matrix-Faktorisierung (NMF)
Manifold Learning mit t-SNE
Clusteranalyse
k-Means-Clustering
Agglomeratives Clustering
Hierarchische Clusteranalyse
DBSCAN
Clusteralgorithmen

Evaluierung und Verbesserung (ca. 2 Tage)
Modellauswahl und Modellevaluation
Abstimmung der Hyperparameter eines Schätzers
Kreuzvalidierung
Gittersuche
Evaluationsmetriken
Klassifikation

Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse

Deep Learning

Einführung Deep Learning (ca. 1 Tag)
Deep Learning als eine Art von Machine Learning

Grundlagen in neuronalen Netzen (ca. 4 Tage)
Perceptron
Berechnung neuronaler Netze
Optimierung der Modellparameter, Backpropagation
Deep-Learning-Bibliotheken
Regression vs. Klassifikation
Lernkurven, Überanpassung und Regularisierung
Hyperparameteroptimierung
Stochastischer Gradientenabstieg (SGD)
Momentum, Adam Optimizer
Lernrate

Convolutional Neural Network (CNN) (ca. 2 Tage)
Bildklassifizierung
Convolutional-Schichten, Pooling-Schichten
Reshaping-Schichten, Flatten, Global-Average-Pooling
CNN-Architekturen ImageNet-Competition
Tiefe neuronale Netze, Vanishing Gradients, Skip-Verbindungen, Batch-Normalization

Transfer Learning (ca. 1 Tag)
Anpassen von Modellen
Unüberwachtes Vortrainieren
Image-Data-Augmentation, Explainable AI

Regional CNN (ca. 1 Tag)
Objektlokalisierung
Regressionsprobleme
Verzweigte neuronale Netze

Generative Adversarial Networks (ca. 1 Tag)
Anwendungen von GANs
Deepfakes
Deep-Convolutional-GANs

Recurrente neurale Netze (ca. 2 Tage)
Sequenzanalyse
Rekurrente Schichten
Backpropagation through time (BPTT)
Analyse von Zeitreihen
Exploding und Vanishing Gradient Probleme
LSTM (Long Short-Term Memory)
GRU (Gated Recurrent Unit)
Deep RNN
Deep LSTM

Textverarbeitung durch neuronale Netze (ca. 2 Tage)
Text-Preprocessing
Embedding-Schichten
Text-Klassifizierung
Sentimentanalyse
Transfer-Learning in NLP
Übersetzungen
Seqence-to-Sequence-Verfahren, Encoder-Decoder-Architektur

Sprachmodelle (ca. 1 Tag)
BERT
Attention-Schichten, Transformers
Textgeneration-Pipelines
Summarization
Chatbots

Deep Reinforcement Learning (ca. 1 Tag)
Steuerung dynamischer Systeme
Agentensysteme
Training durch Belohnungen
Policy Gradients
Deep-Q-Learning

Bayes'sche neuronale Netze (ca. 1 Tag)
Unsicherheiten in neuronalen Netzen
Statistische Bewertung von Prognosen
Konfidenz, Standardabweichung
Unbalancierte Daten
Sampling-Methoden

Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse



Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

 

Schlagworte
datenverarbeitung, datenanalyse

 

Gelistet in folgenden Rubriken: