Data Analytics
Kurs-ID | 7664-0005-20230227 |
Datum | 27.02.2023 bis 24.03.2023 |
Dauer | 4 Wochen |
Unterrichtszeiten | Montag bis Freitag von 08:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr) |
Kosten | k. A. |
Zielgruppe | <p>Der Lehrgang richtet sich an Personen mit abgeschlossenem Studium in der Informatik, Wirtschaftsinformatik, Mathematik, BWL oder vergleichbarer Qualifikation.</p> |
Voraussetzung | Programmierkenntnisse (idealerweise Python) und Erfahrungen mit Datenbanken (SQL) werden vorausgesetzt. |
Abschluss | Zertifikat/Teilnahmebestätigung |
Förderung | Arbeitsagentur, Jobcenter, Beschäftigungs- und Qualifizierungsgesellschaften, BFD, DRV |
Präsenzkurs | Keine Angabe. |
mind. Teilnehmerzahl | 6 |
max. Teilnehmerzahl | 25 |
URL des Kurses | Details beim Anbieter |
Anmelde URL des Kurses | Direkte Anmeldung beim Anbieter |
spezielles Angebot für Dozenten | Nein. |
Veranstaltungsort
|
alfatraining Bildungszentrum GmbH
Friedrichstraße 13 70174 Stuttgart |
Abendkurs | Bildungsgutschein | Barierrefreier Zugang |
---|---|---|
Nein | Ja | Nein |
Beschreibung |
---|
Data Analytics: Einführung Datenanalyse (ca. 1 Tag) CRISP-DM Referenzmodell Data Analytics Workflows Begriffsabgrenzung Künstliche Intelligenz, Machine Learning, Deep Learning Anforderungen und Rolle im Unternehmen des Data Engineers, Data Scientists und Data Analysts Wiederholung Grundlagen Python (ca. 1 Tag) Datentypen Funktionen Datenanalyse (ca. 3 Tage) Zentrale Python-Module im Kontext Data Analytics (NumPy, Pandas) Prozess der Datenaufbereitung Data Mining Algorithmen in Python Datenvisualisierung (ca. 3 Tage) Explorative Datenanalyse Insights Datenqualität Nutzenanalyse Visualisierung mit Python: Matplotlib, Seaborn, Plotly Express Datenmanagement (ca. 2 Tage) Big Data Architekturen Relationale Datenbanken mit SQL Vergleich von SQL- und NoSQL-Datenbanken Business Intelligence Datenschutz im Kontext der Datenanalyse Datenanalyse im Big Data Kontext (ca. 1 Tag) MapReduce-Ansatz Spark NoSQL Dashboards (ca. 3 Tage) Bibliothek: Dash Aufbau von Dashboards – Dash Components Customizing von Dashboards Callbacks TextMining (ca. 1 Tag) Data Preprocessing Visualisierung Bibliothek: SpaCy Projektarbeit (ca. 5 Tage) Zur Vertiefung der gelernten Inhalte Präsentation der Projektergebnisse |
Gelistet in folgenden Rubriken: |
---|