Data Manager:in
Kurs-ID | 7675-0052-20230227 |
Datum | 27.02.2023 bis 16.06.2023 |
Dauer | 16 Wochen |
Unterrichtszeiten | Montag bis Freitag von 08:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr) |
Kosten | k. A. |
Zielgruppe | <p>Fachkräfte aus den Bereichen Betriebswirtschaft, (Wirtschafts-) Informatik, Ingenieurwesen, aber auch Geschäftsführer:innen oder Key Account Manager:innen.</p> |
Abschluss | Zertifikat/Teilnahmebestätigung |
Förderung | Arbeitsagentur, Jobcenter, Beschäftigungs- und Qualifizierungsgesellschaften, BFD, DRV |
Präsenzkurs | Keine Angabe. |
mind. Teilnehmerzahl | 6 |
max. Teilnehmerzahl | 25 |
URL des Kurses | Details beim Anbieter |
Anmelde URL des Kurses | Direkte Anmeldung beim Anbieter |
spezielles Angebot für Dozenten | Nein. |
Veranstaltungsort
|
alfatraining Bildungszentrum GmbH
Belfortstraße 2 69115 Heidelberg |
Abendkurs | Bildungsgutschein | Barierrefreier Zugang |
---|---|---|
Nein | Ja | Nein |
Beschreibung |
---|
Data Manager:in: Big Data Grundlagen Datenmanagement (ca. 2 Tage) Anforderungen an Daten Data Governance Datenbereinigung Was ist Big Data? (ca. 4 Tage) Die fünf Vs: Volume, Velocity, Variety, Value, Veracity Chancen und Risiken großer Datenmengen 6 Schritte des CRISP-DM Industriestandards Data Warehouse, Data Lake Abgrenzung: Business Intelligence, Data Analytics, Data Science Was ist Data Mining? Verteilte Systeme (ca. 3 Tage) SQL/NoSQL Was ist Web 2.0? Begriffserläuterung Cloud-Computing Einsatzmöglichkeiten von Google, Hadoop, Spark MapReduce Datenmanagement (ca. 2 Tage) ETL (extract, transform, load) Datenerfassung, -speicherung, -analyse und -verwendung Relationale Datenbanken, SQL (ca. 2 Tage) Entitätsmengen Relationen Datenbanken/Tabellen Schlüsselfelder Einsatz Indizes Datenbanksystemtypen Datentypen: Standard- und spezielle Datentypen Beziehungen zwischen Relationen Entity-Relationship-Modell NoSQL (ca. 2 Tage) Grenzen von relationalen Abfragesprachen Cap-Theorem ACID vs. Base No-SQL Technologien Rechtliche Grundlagen (ca. 2 Tage) GDPR Datenschutz und -sicherheit DSGVO Das Bundesdatenschutzgesetz Projektarbeit (ca. 3 Tage) Zur Vertiefung der gelernten Inhalte Präsentation der Projektergebnisse Statistik Statistische Grundlagen (ca. 6 Tage) Messtheoretische Grundlagen (Grundgesamtheit und Stichprobe, Stichprobenarten, Messung und Skalenniveaus) Univariate Deskriptivstatistik (Häufigkeitsverteilungen, Zentralmaße, Streuungsmaße, Standardwerte, Histogramme, Balkendiagramme, Kreisdiagramme, Liniendiagramme und Boxplots) Bivariate Deskriptivstatistik (Zusammenhangsmaße, Korrelationskoeffizienten, Kreuztabellen, Streudiagramme und gruppierte Balkendiagramme) Grundlagen der induktiven Inferenzstatistik (Wahrscheinlichkeitsverteilung, Normalverteilung, Mittelwerteverteilung, Signifikanztest, Nullhypothesentest nach Fisher, Signifikanz, Effektgröße, Parameterschätzung, Konfidenzintervalle, Fehlerbalkendiagramme, Poweranalysen und Ermittlung des optimalen Stichprobenumfangs) Methoden zum Vergleich von zwei Gruppen (ca. 5 Tage) z- und t-Test für eine Stichprobe (Abweichung von einem vorgegebenen Wert) t-Test für den Mittelwertsunterschied von zwei unabhängigen/ verbundenen Stichproben Prüfung der Wirksamkeit von Aktionen, Maßnahmen, Interventionen und anderen Veränderungen mit t-Tests (Pretest-Posttest-Designs mit zwei Gruppen) Unterstützende Signifikanztests (Anderson-Darling-Test, Ryan-Joiner-Test, Levene-Test, Bonnet-Test, Signifikanztest für Korrelationen) Nonparametrische Verfahren (Wilcoxon-Test, Vorzeichentest, Mann-Whitney-Test Kontingenzanalysen (Binomialtest, Exakter Test nach Fisher, Chi-Quadrat-Test, Kreuztabellen mit Assoziationsmaße) Methoden zum Mittelwertvergleich von mehreren Gruppen (ca. 5 Tage) Ein- und zweifaktorielle Varianzanalyse (einfache und balancierte ANOVA) Mehrfaktorielle Varianzanalyse (Allgemeines Lineares Modell) Feste, zufällige, gekreuzte und geschachtelte Faktoren Mehrfachvergleichsverfahren (Tukey-HSD, Dunnett, Hsu-MCB, Games-Howell) Interaktionsanalyse (Analyse von Wechselwirkungseffekten) Trennschärfe und Poweranalyse bei Varianzanalysen Einführung in die Versuchsplanung (DoE, Design of Experiments) (ca. 1 Tag) Voll- und teilfaktorielle Versuchspläne Projektarbeit (ca. 3 Tage) Zur Vertiefung der gelernten Inhalte Präsentation der Projektergebnisse SQL - Relationale Datenbanken Grundlagen von Datenbanksystemen mit Access (ca. 3 Tage) Redundante Daten Datenintegrität Normalisierung BCNF DB-Entwurf Beziehung 1:n, m:n Datentypen Tabellen Primär- und Fremdschlüssel Referentielle Integrität Beziehungen zwischen Relationen Entity-Relationship-Modell Index, Standartwert Einschränkungen (Check) Abfragen Formulare, Berichte Zirkelbezug Einführung in SQL Server Management Studio (SSMS) (ca. 2 Tage) Übersicht Phys. DB-Design Tabellen erstellen Datentypen in MS SQL Primary Key Einschränkungen, Standartwerte, Diagramm, Beziehungen Backup und Restore Einführung in DDL (ca. 8 Tage) SQL Grundlagen Syntax Befehle Mehrere Tabellen Operatoren Ablaufkontrolle Skalarwertfunktionen Tabellenwertfunktionen Systemfunktionen Prozeduren mit und ohne Parameter Fehlertypen Transaktionen, Sperren, DeadLock DCL – Data Control Language (ca. 1 Tag) Anmeldungen Benutzer Rollen Berechtigungen Datentypen, Datenimport und -export (ca. 1 Tag) Datentyp geography Datenexport, Datenimport Projektarbeit (ca. 5 Tage) Zur Vertiefung der gelernten Inhalte Präsentation der Projektergebnisse Programmierung mit Python Grundlagen (ca. 1 Tag) Geschichte, Konzepte Verwendung und Einsatzgebiete Syntax Erste Schritte mit Python (ca. 5 Tage) Zahlen Zeichenketten Datum und Zeit Standardeingabe und -ausgabe list, tuple dict, set Verzweigungen und Schleifen (if, for, while) Funktionen (ca. 5 Tage) Eigene Funktionen definieren Variablen Parameter, Rekursion Funktionale Programmierung Fehlerbehebung (ca. 0,5 Tage) try, except Programmunterbrechungen abfangen Objektorientierte Programmierung (ca. 4,5 Tage) Python-Klassen Methoden Unveränderliche Objekte Datenklasse Vererbung Grafische Benutzeroberfläche (ca. 1 Tag) Buttons und Textfelder grid-Layout Dateiauswahl Projektarbeit (ca. 3 Tage) Zur Vertiefung der gelernten Inhalte Präsentation der Projektergebnisse |
Gelistet in folgenden Rubriken: |
---|